
N88-16364

METHODOLOGY FOR TESTINGANDVALIDATINGKN_ BASES

C. Krishnamurthy, S. Padalkar, and J. Sztipanovits

Center for Intelligent Systems

Vanderbilt University, Nashville, Tennessee

B.R. Purves

Boeing Aerospace Company, Huntsville Alabama

ABSTRACT

The paper describes a test and validation toolset developed for

artificial intelligence programs. The basic premises of this method are:

(I) knowledge bases have a strongly declarative character and represent

mostly structural information about different domains, (2) the conditions

for integrity, consistency and correctness can be transformed to struc-

tural properties of knowledge bases and (3) structural information and

structural properties can be uniformly represented by graphs and checked

by graph algorithms. The interactive test and validation environment have

been implemented on a SUN workstation.

_.'..:_CF.Dir_GpAGE BLANK NOT F|LIMEO

21



INTRODUCTION

Testing and validation is the ultimate precondition for the applica-

tion of artificial intelligence (AI) technology in space systems. In spite

of its obvious significance, testing and validation have been a neglected

topic in AI research. The results being reported are quite contradictory.

Some authors have pointed out that certain knowledge-based systems, such

as expert systems, are inherently untestable and unreliable, while others

argue that software validation is easier for knowledge-based systems than

for conventional programs.

The first section of this paper summarizes our results in the evalua-

tion of AI technology from the aspect of software engineering. An impor-

tant conclusion of this analysis is that clear separation between AI

systems (expert systems, natural language systems, etc.) and AI techniques

(declarative programming, symbolic progran_ring, etc.) is necessary. It has

been shown, that the well-known difficulties in testing and validation are

inherent nature of the functionality of specific AI systems and do not

stem from the implementation technology. Most importantly, the basic AI

techniques offer new opportunities in software testing and validation,

which can dramatically improve the test technology of complex software

systems.

The second section of the paper describes a test and validation

toolset developed for AI program_ting. The basic thrusts of the selected

methodology are: (I) knowledge bases have strongly declarative character

and represent mostly structural information about different domains, (2)

the conditions for integrity, consistency and correctness can be trans-

formed to structural properties of knowledge bases and (3) structural

information and structural properties can be uniformly represented by

graphs and checked by graph algorithms.

An interactive test and validation environment has been implemented

on SUN workstation. The knowledge representation paradigms for which test

and validation methods have been developed include: rule-based systems and

object-oriented progranm_ng. The application of the methodology is

presented for testing structural properties of object-oriented programs.

BACKGROUND

The problems of testing and validation can be examined only in the

context of the system to be tested and validated. Therefore, clear dis-

tinction must be made between systems that are built using AI and the

techniques developed and used in AI programming.

I. AI Systems and AI Techniques

One of the widely accepted, generic objectives of AI is to con-

struct intelligent agents (Newell, 1982). Intelligent agents can

operate autonomously in a task environment, are able to recognize

their situation by means of the perceptual components, and are able to

plan their actions according to a goal structure by means of their

general knowledge. These capabilities are also manifestations of human

intelligence, i.e., the primary objective of AI systems is to mimic

human intelligence.

22



ORIGINAL PAGE IS

,OF, POOR QUALITY ,
The AI systems wnzcn nave recelveo the largest publicity in

recent years are expert systems. Their primary purpose is to represent

human knowledge symbolically and "operate" on the knowledge by using

automated reasoning methods. Some of the most important aspects of

expert systems that have attracted considerable attention are:

- ability to capture rare and expensive human expertise and make it

available,

- ability to reliably operate in fuzzy, unexpected situations,

- ability to implement heuristics,

- ability to explain actions for users.

While seeking a better understanding of human intelligence and

implementing systems that exhibit "intelligent" behavior, research in

AI has discovered a number of novel software techniques and tools.

These techniques and tools have proven to be extremely useful in a

number of application domains struggling with construction of highly

complex systems. More importantly, AI techniques have provided methods

to use computers for symbolic, qualitative "computations, " which have

the immediate potential for building new generations of application

systems in areas such as instrumentation and process control. The

approach, which focuses primarily on AI techniques and not so much on

the scientific objectives of AI, (i.e., understanding and imitation of

human intelligence) is often referred to as AI engineering (Allmen-

clinger, 1986).

It would be difficult to enumerate all of the new software tech-

niques originated and elaborated by AI research. Here we discuss only

declarative programming, which is widely used in the implementation of

intelligent systems.

Conventional programming is essentially imperative, i.e.,

programs describe the sequence of steps that are necessary for solving

a particular problem. We may state that imperative programs primarily

represent "how to" knowledge. In imperative programming the programmer

is responsible for transforming the problem definition ("what to")

into its solution of imperative style.

Declarative programs describe the declarations of problems rather

than their solution. The basic technique used in declarative program-

ming is to build "smart" interpreters that can transform the declara-

tions into "how to" knowledge. The key components of declarative

progra_ning are (I_ the problem-specific representation language,

which is used for describing the problem and (2) the corresponding
interpreter.

Well-known programming paradigms that are strongly declarative
are :

- logic programming, where progranming occurs in the form of declar-

ing objects and their relations, (a well known example of logic

programming languages is, of course, Prolog),

- rule-based programming, where the knowledge is expressed primarily
in rule format (e.g., ART, KEE, etc.),

- constraint-based programming, which includes the declaration of

objects (e.g., variables) and the constraints (e.g., arithmetic

23



constraints) among them.

Declarative programming is widely used in constructing knowledge-

based systems. The "knowledge base" is usually the declarative com-

ponent while the interpreter is the procedural con_ponent of these

systems (e.g., the rule base is the knowledge base, the inference

engine is the interpreter in the case of rule-based expert systems).

2. Testability in AI Programming

Whether we approach AI progran_ning from the side of specific AI

systems (e.g., expert systems) or from the side of AI programming

techniques (e.g., declarative programming), we can identify sig-

nificantly different views concerning testing and validation.

From a functional point of view, expert systems try to mimic

human expertise. The basic conceptual and practical problems stenmdng

from this fact are clearly described by Lane, 1986.

a. Testing requires design specifications. Lane's observation is that

specifications for expert systems, against which system perfor-

mance can be evaluated "are almost universally lacking in current

expert system developments." The probable reason is that though

the concept of expertise is intuitively clear, it is impossible to

give a unique specification for it (at least presently or in the

immediate future). Obviously, the "rule-set" of rule-based expert

systems can be considered only as a "model" of expertise, rather

than its specification. He suggests the development of new methods

for setting design requirements and system specifications that

should be based on an improved understanding of the roles of

expert systems in complex systems.

b. Performance is dependent on the scenario. A well-known problem of

current and near-future expert systems is that their performance

degrades dramatically at the "boundary of their knowledge base."

Contrary to human experts, expert systems are unable to detect

their limits so as to avoid catastrophic failures and to degrade

gracefully in new or marginal conditions. Lane points out that

except in the relatively sinple cases, when the "expert system" is

actually the implementation of a well-defined decision tree, the

performance evaluation of expert systems has an "inherent

dilenma." A possible method of testing is to sample the scenarios

and conditions, and evaluate the system performance in specific

situations. This method can fail to detect even potentially

catastrophic outcomes. The other alternative is systematic

enumeration of all possible input conditions, which is unrealistic
in most cases due to time and cost.

Test approaches can help in the development of expert sys-

tems, but cannot resolve the problems mentioned above (Gashing et

al., 1983).

The declarative character of the knowledge bases offers new

opportunities for testing some of their structural and logical

features. Validation methods are presented in Stachowitz et al.,

1987; Nguyen, 1987; and Suwa et al., 1982; for checking inconsis-

24



tency, completeness, redundancy, etc., of rule bases. It should be

mentioned that these tests cannot guarantee functional correctness

but can offer significant help in detecting potential problems.

GENERIC TEST ANDVALIDATIONMETHODOLOGY FOR KNOWIE[XZE BASES

The basic thrust of our methodology is that the primary implementa-

tion technique for knowledge-based systems is declarative programming. As

we have previously discussed, declarative progran_ting includes three

different program components, which are:

- interpreter,

- typically small imperative components, and
- declarations.

The interpreter and the imperative components are basically conventional

programs that can be tested and evaluated by using well elaborated

software engineering methods and techniques. In this sense, testing and

evaluation of declarative programs does not differ from that of the con-

ventional programs. The major difference is that the complexity of decla-

rative programs is mostly concentrated in the declarations constituting

the "knowledge base" of the system to be tested. Below we summarize some

of the new opportunities emerging for testing and validation of declara-

tive programs.

i. Automatic Proof of Correctness

Declarative programs are typically symbolic representations of

structures. It is possible to implement automatic reasoning processes

that can prove various properties of the structures represented.

Requirements, such as:

"The fan-out must be less than or equal to 20," or

"Two active outputs cannot be connected"

can be easily checked on the declarative representation of a digital

circuit simulator program. In other words, the functional correctness

of the simulator can be tested by using automatic, high-level tools.

2. Mathematical Modelling

The structure of declarative programs can be mapped into graphs

and different structural properties can be _]ecked by using graph

algorithms. E.g., causal networks which are used in failure mode and

effect analysis can be tested for cycles; physical structures can be

tested for connectivity; signal-flow structures can be tested for

loops, etc. Graph algorithms can be used for testing the equivalence

of different declarative programs, which is a unique possibility.

(Proving the equivalence of imperative programs is an extremely com-

plicated problem.)

3. Graphic Tools

Since declarative programs typically represent structures, they

can be represented by graphic tools, and can be synthesized by inter-

25



active graphic editors.

Although, these opportunities have been recognized and exploited
in someof the test and validation techniques mentioned before, their
commonfeature is that the actual implementation is closely coupled to
a particular knowledge-based system and knowledge representation
language (Stachowitz, 1987).

Our goal was the development of a generic methodology and
progranming environment which effectively supports the testing and
validation of different kinds of knowledge-based systems. The
rationale behind this goal is the recognition that knowledge-based
systems include multiple knowledge bases and are described in dif-
ferent representation languages.

The generic test and validation method can be summarized as
follows.

Let us suppose, that L is the representation language and P is a
set of declarations written in L. The general steps of validating the
knowledge base are the following:

Specification of test criteria. By analyzing the specific nature
of the knowledge base, a relevant set of test criteria [c(1),

c(2),...,c(n)] has to be defined. The individual test criteria should

be assertions on the structural properties of the knowledge base.

Specification of mapping rules. Depending on the semantics and

syntactics of L, and the way the test criteria can be expressed as

abstract graph properties, mapping rules (M) are defined. The rules

maps P into a labelled, directed graph M (P) ->G (V,E) . The labels of the

vertices and edges of the graph: v[a (i), a (2), ..., a (n) ] and

e[a(1),a(2),...a(j)] are attributes that are extracted from P and

associate the nodes and edges with its semantic entities.

Specification of user interface. The actual test proceeds by

mapping the knowledge base (or certain sections of the knowledge base)

into graphs and checking the test criteria by running graph algo-

rithms. The results of the tests are presented by using a knowledge

base specific graphic interface.

STRUCTURE OF THE TEST AND VALIDATION ENVIRONM/KNT

The methodology described above makes it possible for the design of a

test and validation environment (TVE) where the common components are

clearly separated from those which are unique to specific knowledge bases.

The ultimate benefit of this separation is that the system can be easily

adapted to different problems and representation languages and can provide

a unified environment for testing and validating knowledge bases.

The structure of the TVE can be seen in Figure i. The MAPPER accepts

the knowledge base to be tested from the user and maps it into a graph.

The ANALYZER runs a set of graph algorithms and outputs the results to the

user. The analysis process is interactive and supported by graphics. The

ANALYZER KERNEL constitutes the common part of TVE. It provides a set of

26



MAPPER ANALYSER

ANALYSER KERNEL

GRAPHICS

Figure 1" Functional Structure

27



services to build, represent and analyze graphs. The sunmary of the inter-

faces of the analyzer kernel can be seen in Tables I, 2, and 3.

The Mapper Interface includes two sets of calls. One of them is used

to parse the input source file which contains the knowledge base. The

other set is used to create and modify graphs. The Analyzer Interface

provides access to the library of graph algorithms which are the basic

building blocks for implementing test and verification procedures.

The selection of graph algorithms is continuously expanded as new

testing and validation methods are developed for different knowledge

bases.

The third group of kernel calls facilitates generation of user inter-

faces. In order to help the user in navigating through complex structures

and in analyzing structural properties, extensive color graphics are used

with a sophisticated window system. The services provided by the graphics

interface are summarized in Table 3. The interactive graphics interface

makes it possible (i) to represent the entire graph, (2) to zoom into

certain areas, (3) to select nodes and edges by using a pointing device

and to display the corresponding semantic entity of the knowledge base in

a text window, and (4) to start various analysis processes through a

hierarchically organized menu interface.

IMPI/94[2TfATION

TVE has been implemented on a SUN 3/110 workstation by using the

Sunview graphics package. The system is decomposed into two communicating

processes (see Figure 2). The Analyzer and Mapper functions run as a LISP

process. The appropriate kernel interface functions are written in C and
are embedded in the LISP environment. The advantage of this solution is

that the knowledge base specific components of the Analyzer and Mapper can

be more conveniently implemented in LISP than in other available

languages.

The graphics interface runs as a separate graphics process which

communicates with the LISP process through UNIX pipes. After receiving a

user command, it is decoded and the appropriate function call is sent to

the LISP process to service the request.

Separation of the graphics interface from the other components of the

syst_J_ ensures the portability of TVE to other workstations, with dif-

ferent graphics capabilities.

APPLICATION EXAMPLE: TESTING AND VALIDATION OF OBJECT-ORIENTED SYSTEMS

Object-oriented programming has the virtue that hierarchical system

declarations and properties, such as structural and functional in-

heritance, can map quite naturally into this programming methodology.

Typically, most of the useful object-oriented systems tend to become

very large _nd, after a point, manual structural testing becomes extremely

difficult, if not impossible. The TVE provides an automated, interactive

test environment, with extensive graphics support, for the structural

28



Table I. Mapper Interface

FUNCTION

Parse input

Create graph

PROCEDURECALLS

[Internal set of macros
specific to the representation language]

create-node (attributes)
create-edge (attributes)

DESCRIPTION

Builds symbol tables,
stores text information

creates a list of nodes
Jedges,and graph adjency lists

Table 2. Analyzer Interface

FUNCTION

Detect cycles

Find connected

Jcomponents

Find nodes

matching cer-
tain attributes

Describe node

Access nodes

PROCEDURE CALLS DESCRIPTION

cycles (graph)

find-connected-components (graph)

finds node-chains which form

cycles in the graph

finds a spanning forest for

the graph

find-group (graph attributes)

display-node (node)

Igen-lower-tree (node)

Jgen-upper-tree (node)

Jpartitions the graph based on

specific attributes of nodes

or edges

displays all attributes of

a node

generates sub-tree

rooted at this node

Table 3. Graphics Interface

FUNCTION

Menu-based

input

Graph layout

PRCCF/gURE CALLS DESCRIPTION

[executive calls] Iconverts analysis requests

Jfrom graphics process into

Janalyzer function calls

I
hierarchy (graph root), bipartite (graph) Idraws nodes and edges on

generators Itree (graph root) Iscreen

l l
JHighlight sec- lhighlight (path graph) [executive calls] Jhighlights cycles, displays
Itions of graph J

I i
J I

Jtext, zooms on sections of the

Jgraph

l

29



INPUT

MAPPER

ANALYZER

t
EXECUTIVE

LISP - C Interface

Pipes

LISP - C Interface

Graphics Routines

&

User Interface

1
USER

Figure 2 • Structure of Implementation

3O



testing of large object-oriented systems.

Currently the facilities provided by the TVE are:

I. Generating the inheritance hierarchy for the entire system.

2. Generation of the inheritance tree for specific object classes in the

system.

3. Detection and highlighting of cyclic inheritance of object classes.

4. Detection of missing class and methoddefinitions.

, Detection of conflicting method definitions (i.e., an object inherits

methods of the same name from two different classes, but these two are

in no way connected, i.e., they lie on two different paths in the

inheritance tree.)

The sequence of actions performed is as follows:

The MAPPER accepts the object-oriented system written in a particular

object-oriented programming language as input, and maps it into a graph.

Each object class in the system is mapped onto a node in the graph,

and edges are defined as follows:

If an object class A inherits(includes) the class definition of

object class B , then there is an edge from the node representing class A

to the node representing class B. With this simple algorithm the entire

graph is built. The current system implements a mapper for a Flavors-like

object-oriented system, and uses the same algorithm as Flavors to deter-

mine method inheritance. The difference is that all information is ex-

plicitly displayed to the knowledge engineer, before expensive dynamic

testing takes place.

For example, in Flavors, cyclic dependencies of objects are avoided,

but the knowledge engineer is not notified. In the TVE all cycles are

explicitly displayed.

On building the entire graph, the mapper terminates, and control

passes to the executive which creates and conm_nicates with the graphics
server.

The graphics server, on creation, generates a window for the user

interface. This window consists of a panel of test options, and a large

canvas for displaying the graph generated for the system. An additional

text sub-window is created for display of textual information about the

system (e.g., object definition or list of inherited methods).

The user can now select any test option by simply selecting that

option from the panel with a pointing device. This selection is conmuni-

cated to the executive who, in turn, invokes analyzer routines to carry

out the test. Information about any object in the system is obtained

simply by pointing at the corresponding node in the graph.

TVE has also been used for supporting the static analysis of large

31



rule-based systems. Specifically, it has been successfully tried on a rule
base containing approximately one hundred OPS5rules.

CONCLUSIONS

The purpose of this paper was to discuss some of the software en-

gineering aspects of AI programming and to describe a method and cor-

responding tools developed for testing and validating knowledge bases. The

essence of the method is that the criteria for correctness is expressed in

the form of structural properties and checked by using various graph

algorithms.

The conclusion of our analysis was that the result of the evaluation

depends on the approach to AI programming. Testing and validation of

certain AI systems which try to mimic manifestations of human intelligence

(e.g., expert systems) may be quite problematic because of the inherent

difficulties in specification and performance evaluation. On the other

side, progranming techniques which are generally used in AI programming

(e. g., declarative progranrning, symbolic programming, etc. ) offer new

opportunities for testing and validating the "knowledge base" of complex

systems. These opportunities serve as one of the main incentives to use AI

programming techniques in the design and implementation of complex sys-

tems.

This conclusion is quite contradictory to the often emphasized view,

that AI techniques are "unsafe" compared to conventional programming

techniques. The fundamental feature of knowledge-based systems is that

most of the complexity is concentrated in their knowledge base. The

dominantly declarative character of knowledge bases allows the application

of automatic testing and validation techniques that can significantly

improve the safety and reliability of large software systems.

REFERENCES

Allmendinger, G., "AI: Can Performance Match the Promise?," InTech, pp.

45-50, April, 1986.

Gashing, J., et al., "Evaluation of Expert Systems," in Building Expert

Systen_, F. Hayes-Roth, D.A. Waterman, and D.B. Lenat, eds., Addison

Wesley, 1983.

Lane, N.E., "Global Issues in Evaluation of Expert Systems," Proc. 1986

International Conference SMC, pp. 121-125, 1986.

Newell, A., "The Knowledge Level," Artificial Intelligence 1:87-127, 1982.

Nguyen, T.A., "Verifying Consistency of Production Systems," Proc. of The

Third Conference on AI Applications, pp. 4-8, 1987.

Stachowitz, R.A., et al., "Validation of Knowledge-Based Systems," Second

AIAA/NASA/USAF Symposium on Automation, Robotics and Advanced Comput-

ing for the National Space Program, 1987.

Suwa, M., et al., "An Approach to Verifying Completeness and Consistency

32




